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Problems with fitting to the power-law distribution
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Abstract. This short communication uses a simple experiment to show that fitting to a power law dis-
tribution by using graphical methods based on linear fit on the log-log scale is biased and inaccurate. It
shows that using maximum likelihood estimation (MLE) is far more robust. Finally, it presents a new
table for performing the Kolmogorov-Smirnov test for goodness-of-fit tailored to power-law distributions
in which the power-law exponent is estimated using MLE. The techniques presented here will advance
the application of complex network theory by allowing reliable estimation of power-law models from data
and further allowing quantitative assessment of goodness-of-fit of proposed power-law models to empirical
data.

PACS. 02.50.Ng Distribution theory and Monte Carlo studies – 05.10.Ln Monte Carlo methods – 89.75.-k
Complex systems

1 Introduction

In recent years, a significant amount of research has fo-
cused on showing that many physical and social phenom-
ena follow a power-law distribution. Some examples of
these phenomena are the World Wide Web [1], metabolic
networks [2], Internet router connections [3], journal pa-
per reference networks [4], and sexual contact networks [5].
Often, simple graphical methods are used for fitting the
empirical data to a power-law distribution. Such graphi-
cal analysis, based on linear fitting of log-log transformed
data, can be grossly erroneous.

The pure power-law distribution, known as the zeta
distribution, or discrete Pareto distribution [6] is ex-
pressed as

p(k) =
k−γ

ζ(γ)
, (1)

where:
– k is a positive integer usually measuring some variable

of interest, e.g., number of links per network node;
– p(k) is the probability of observing the value k;
– γ is the power-law exponent;

– ζ(γ) is the Riemann zeta function defined as
∞∑

k=1

k−γ .

It is important to note, from this definition, that γ > 1
for the Riemann zeta function to be finite.
Without a quantitative measure of goodness-of-fit, it

is difficult to assess how well data approximates a power-
law distribution. Moreover, a quantitative analysis of the
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goodness-of-fit enables the identification of possible inter-
esting phenomena that could be causing the distribution
to deviate from a power-law. In some cases the underlying
process may not actually generate power-law distributed
data, which may instead be due to outside influences, such
as biased data collection techniques or random bipartite
structures [7]. Quantitative assessment of the goodness-of-
fit for the power-law distribution can assist in identifying
these cases.

This paper demonstrates that the current broadly used
methods for fitting to the power-law distribution tend
to provide biased estimates for the power-law exponent,
while the maximum likelihood estimator (MLE) produces
more accurate and robust estimates. Finally, MLE per-
mits the use of a Kolmogorov-Smirnov (KS) test to assess
goodness-of-fit. This paper provides a new KS table suit-
able for testing power-law distributions derived from MLE
estimation.

2 Problems of currently used estimation
methods

In the literature, many researchers make parameter esti-
mations using simple graphical methods, such as 1) direct
linear fit of the log-log plot of the full raw histogram of the
data [8,9], 2) fit of the first 5 points of the log-log plot of
the raw histogram [10], or 3) linear fitting to logarithmi-
cally binned histograms [1,11]. The easy graphical nature
of these methods tends to mask their basic inaccuracy. In
a simple experiment, a random deviate generator was used
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Table 1. Sample results of parameter estimation using various
methods for 10,000 samples of power-law distribution with γ =
2.500. Sample result based on 50 runs.

Mean

estimated Bias

Estimation method γ σ error

Linear 1.590 0.184 36%

Linear 5-points 2.500 0.045 0

Log-2 bins 1.777 0.038 29%

MLE 2.500 0.017 0

to produce a dataset of 10 000 samples from a known zeta
distribution with exponent γ = 2.500. The three graphical
methods listed above were used to estimate the power-law
exponent from the dataset. This experiment was repeated
50 times and the tabulated results are presented in Ta-
ble 1. Linear fitting was performed using least squares
regression, where the slope of the fit was used as the esti-
mate of the exponent γ. MLE estimates of the exponent
are also included in the table.

This table shows that two of the methods, full linear
fit, and linear fit on logarithmic bins, suffer from severe
bias, with 36% and 29% bias error respectively. The most
accurate of the three graphical methods is the linear fit
of the first 5 points, where the estimate is based on the
slope of the first 5 points of the distribution histogram
in log-log scale. These first 5 points contain most of the
data and, due to the large number of samples, they can
decrease the bias caused by the large uneven variation in
the tail (the log-log transformation distorts the error in
the tail unevenly). However, the variance of this estimate
is much higher than the variance of estimates from MLE,
showing the stability of MLE.

Maximum likelihood estimation of the zeta distribu-
tion [6] maximizes the log-likelihood function given by,
assuming independence between the data points:

l(γ | x) =
N∏

i=1

x−γ
i

ζ(γ)

L(γ | x) = log l(γ | x)

=
N∑

i=1

(−γ log(xi) − log(ζ(γ)))

= −γ

N∑

i=1

log(xi) − N log(ζ(γ)), (2)

where:

– l(γ | x) is the likelihood function of γ given the un-
binned data x = xi1<=i<=N ,

– L(γ | x) is the log-likelihood function.

This maximum can be obtained theoretically for the zeta
distribution by finding the zero of the derivative of the

log-likelihood function

d

dγ
L(γ | x) = −

N∑

i=1

log(xi) − N
1

ζ(γ)
d

dγ
ζ(γ) = 0

⇒ ζ′(γ)
ζ(γ)

=
1
N

N∑

i=1

log(xi) (3)

where: ζ′(γ) is the derivative of the Riemann Zeta
function.

A table with the value of the ratio ζ′(γ)/ζ(γ) can be
found in [12], or values can be generated on most modern
mathematical and engineering calculation programs such
as Matlab, Maple and Mathematica.

Note that the parameter estimate of a power-law expo-
nent has very limited meaning without some assessment
of its goodness-of-fit. The KS test is a robust and simple
goodness-of-fit test that can be used to obtain this infor-
mation.

3 Using a KS-type goodness-of-fit test
for power-law distribution hypothesis

The two most commonly used goodness-of-fit tests are
Pearson’s χ2 test, and the Kolmogorov-Smirnov (KS) type
test. The Pearson’s χ2 test is very simple to perform but
has severe problems related to the choice of the number
of classes to use [13]. Because of this, in most cases it is
preferable to use the KS test. The KS test is based on the
following test statistic:

K = sup
x

|F �(x) − S(x)| , (4)

where:

– F �(x) is the hypothesized cumulative distribution
function

– S(x) is the empirical distribution function based on
the sampled data.

Kolmogorov [14] first supplied a table for this test
statistic for the case where the hypothesized distribution
function was independent to the data, i.e., when none of
the parameters of the hypothesized distribution function
are extracted from the data. When there is a dependency,
other tables must be used. This limitation was not taken
into consideration by Pao and Nicholls in their applica-
tion [13,15] of the KS test to power-laws. Without cor-
recting for this factor, the KS test gives a rejection rate
lower than what is expected [16].

Lilifoers later introduced tables for using the KS test
with other distributions, such as normal and exponen-
tial [17,18]. These tables were obtained using a Monte
Carlo method, which is based on generating a large num-
ber of distributions with random parameters and calculat-
ing the test statistic for each of the test cases, from which
empirical values for the quantiles can be extracted. The
same procedure was used to obtain these values for the
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Table 2. KS test table for power-law distributions, assuming
MLE estimation.

Quantile

# samples 0.9 0.95 0.99 0.999

10 0.1765 0.2103 0.2835 0.3874

20 0.1257 0.1486 0.2003 0.2696

30 0.1048 0.1239 0.1627 0.2127

40 0.0920 0.1075 0.1439 0.1857

50 0.0826 0.0979 0.1281 0.1719

100 0.0580 0.0692 0.0922 0.1164

500 0.0258 0.0307 0.0412 0.0550

1000 0.0186 0.0216 0.0283 0.0358

2000 0.0129 0.0151 0.0197 0.0246

3000 0.0102 0.0118 0.0155 0.0202

4000 0.0087 0.0101 0.0131 0.0172

5000 0.0073 0.0086 0.0113 0.0147

10000 0.0059 0.0069 0.0089 0.0117

50000 0.0025 0.0034 0.0061 0.0077

power-law distribution. For each of logarithmically spaced
sample sizes, 10,000 power-law distributions were simu-
lated, with random exponent from 1.5 to 4.0. Statistics
were collected from these simulations to generate the KS
quantiles, shown in Table 2. This table was created as-
suming MLE as the estimation method. Separate KS ta-
bles would have to be constructed for other estimation
methods.

Conover [16] presents detailed instructions of how to
use the KS table for obtaining a goodness-of-fit estimate.
Next, a very simple practical example will be shown on
how to use the techniques presented in this paper.

The data set used contains 900 papers in the complex
networks field, and the distribution tested was of the num-
ber of papers per author, often characterized as a power-
law known as Lotka’s Law [19]. These papers were written
and co-written by a total of 1,354 different authors. Fig-
ure 1 shows the empirical distribution in a log-log plot.
The MLE estimation can be obtained simply by calculat-
ing 1

N

∑N
i=1 log(xi) given in equation (3), where xi is the

number of papers authored by author i. This sum in this
data set equals to 0.2739. By using Matlab, it is possible
to solve equation (3) for γ, resulting in γ = 2.544. It is
also possible to use the table provided in [12], but it would
result in lower precision. Figure 1 shows also the plot of
the fitted power-law line.

Now, in order to test if this fit is reasonable, the KS
test can be used. This test requires the calculation of the
maximum distance between the hypothesized cumulative
distribution (F �(x) – a power-law distribution with ex-
ponent 2.544), and the empirical distribution S(x). For
this case, the test statistic obtained was K = 0.0117. The
number of samples (number of authors) is N = 1, 354.
The closest value to N in Table 2 is N = 1, 000 (although
it would be statistically “safer” to choose the next high-

10
0

10
1

10
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x = number of papers per author

pr
ob

ab
ili

ty
 o

f x

actual
MLE fit

Fig. 1. Example of log-log plot of papers per author distribu-
tion for 900 papers in the complex networks field. The circles
represent the empirical distribution and the line represents the
MLE estimate of the power-law distribution. γMLE = 2.544.

est number of samples to ensure that the rejection rate is
not lower than the one stated in the test, in practice it is
considered reasonable to approximate to the closest value
when the statistic is not close to the critical values). Look-
ing at the quantile values of the row for 1,000 samples,
the observed K, 0.0117, is below 0.0186, the 0.9 quantile.
This means that the observed significance level (OSL) is
greater than 10%, i.e., in more than 10% of the cases where
the distribution is an actual power-law, the K statistic is
greater than 0.0117. Therefore, with an OSL greater than
10%, there is insufficient evidence to reject the hypothesis
that the distribution is a power-law.

This simple example shows how easy the calculation
of the MLE estimate and the K statistic is, and how to
consult the KS table to obtain good basis to confirm or
reject the power-law distribution hypothesis.

4 Conclusions

A simple experiment using a random deviate generator
shows that linear-fit based methods for estimating the
power-law exponent tend to produce erroneous results.
MLE based estimates, which are simple to produce using
tables or built-in math functions in computational soft-
ware, provide a more robust estimation of the power-law
exponent.

In conjunction with the MLE method, the KS-type
test table given here can be used to produce a quantita-
tive assessment of goodness-of-fit, allowing researchers to
meaningfully assess and compare the appropriateness of
modeling empirical data as a power-law distribution.
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